Your generation
Making decentralised energy happen

Reviewing the decentralisation of energy in the UK | June 2016
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive summary</td>
<td>2</td>
</tr>
<tr>
<td>The value of decentralised energy</td>
<td>4</td>
</tr>
<tr>
<td>What is decentralised energy?</td>
<td></td>
</tr>
<tr>
<td>Balancing risk and reward</td>
<td></td>
</tr>
<tr>
<td>Drivers for change</td>
<td></td>
</tr>
<tr>
<td>Delivering decentralised energy</td>
<td>8</td>
</tr>
<tr>
<td>The role of local authorities</td>
<td></td>
</tr>
<tr>
<td>Funding and returns</td>
<td></td>
</tr>
<tr>
<td>Project development support</td>
<td></td>
</tr>
<tr>
<td>Heat Networks Delivery Unit (HNDU)</td>
<td></td>
</tr>
<tr>
<td>Place Analytics – Where should it happen?</td>
<td>18</td>
</tr>
<tr>
<td>About us</td>
<td>21</td>
</tr>
</tbody>
</table>
There has never been a better time to develop decentralised energy schemes. Technological advances, combined with changes in the management of energy systems, mean more individuals, communities and organisations are producing their own energy, linking into the wider distribution network and generating income.

This has resulted in the national energy generation and distribution system becoming less centralised and a diversification in the generation portfolio with more renewable intermittent generation. This presents a challenge to those balancing energy supply across the grid, but an opportunity for decentralised energy generators who can readily respond to shortages in supply.

The role of local authorities
The UK’s devolution agenda brings the importance of local authorities to the fore as an integral part of creating a vibrant local economy and unlocking wealth creation. As income-generating, multi-million pound businesses providing a complex range of increasingly diverse and sophisticated products and services to their communities, local authorities role can range from teaming up with a licensed electricity supply company and providing a local tariff (eg Cheshire East Council), all the way through to owning and operating energy generation and supply infrastructure, including district heating schemes (eg Nottingham City Council).

Local authorities used to play a large role in the supply of energy before the energy market was nationalised and there is a growing trend to return to this delivery model as more local authorities are engaging in the market. Decentralised energy presents an opportunity for all local authorities to consider and they will be key in implementing the schemes, as they often have control over local policy and assets, an understanding of the location and needs of residents and can make decisions which are not just financially-driven.

“I want to eliminate fuel poverty … and Fairerpower will help us do this. That’s why we have become the first local authority to supply energy to the public since gas and electricity were nationalised in 1948.”

Cllr Michael Jones, Cheshire East Council

Angles to consider when engaging in the decentralised energy space:

- Will the project involve the generation, distribution, and/or supply of energy?
- Will the energy be in the form of electricity and/or heat?
- What technology will be used to generate the energy? (Examples include gas/biomass combined heat and power (CHP), energy from waste, heat pumps, solar panels and wind turbines.)
- Under what structure will the scheme be delivered?
There is no perfect formula and the approaches are varied. For each scheme or scheme extension the best approach should be carefully considered, taking into account the particular circumstances linked to the energy consumption characteristics of the area, availability of resources and appetite for risks and returns.

The global objective to tackle climate change means the push towards decentralised and low carbon energy will only intensify in the years ahead. In the 2008 Climate Change Act, the UK enshrined its contribution to reduce greenhouse gas emissions by 80% on 1990 levels in accordance with EU targets. Given that nearly half of all UK energy use is for heating, decentralised energy schemes that involve the supply of heat are rising to the top of the agenda. The latest statistics suggest that the UK’s 2,000 heat networks only cover about 2% of building heat demand. This is in stark contrast to Denmark, which through considerable investment, provides heat to 60% of its building stock through heat networks, with 95% coverage in the capital Copenhagen.

At least 30% of local authorities are considering investment in heat networks with more considering some form of decentralised energy scheme. The recent funding provided by the Department of Energy and Climate Change’s (DECC’s) Heat Networks Delivery Unit (HNDU), showed the huge appetite for these schemes; since September 2013, 118 out of the 375 local authorities in England and Wales have been awarded development funding for heat networks, resulting in 200 projects now being in some form of conception, development or expansion and additional schemes have been unveiled in London, Scotland and other areas. DECC has also recently announced £320m of ‘pump priming’ capital funding to drive schemes forward between now and 2021.

Many local authorities will be able to deliver cost-efficient, low carbon energy solutions to their communities. To support this, our guide outlines the part local authorities have to play in the decentralisation of energy, the benefits it holds, the funding available and how to access it.

Delivering decentralised energy
Depending on the local authority’s objectives, access to funds and appetite for risk, a number of commercial delivery structures can be used, which involve the local authority and the private sector to varying extents. Obtaining funding can often be a barrier to unlocking decentralised energy projects, but with the right commercial structuring, balance of risk and reward, and well matched demand and supply opportunities, funding can be accessed. Sources can range from development support, grant funding, corporate resources, external funding, or a blend of these.

Decentralised energy projects, in particular heat networks, are often highly driven by the characteristics of places. We have identified indicators of population density, manufacturing density and industrial emissions density to generate a Heat Network Score by location in England. This has identified numerous locations that would be conducive to the development of heat networks.

The way forward
The opportunity to develop decentralised energy is clear, and so are the benefits of doing so: Additional revenue generation to improve council services, tangible action to reduce fuel poverty, economic growth in the area through local employment, greater decarbonisation and contribution towards climate change commitments as well as assisting with security of supply. This guide shows how effective and efficient decentralised energy schemes can not only be delivered, but also funded and structured in a way that meets an individual council’s approach to risk and infrastructure delivery. The guide provides real practical examples from a cross section of different projects to show how concepts are delivered in the real world.

1 DECC The Future of Heating: Meeting the Challenge – March 2013
2 DECC Assessment of the Costs, Performance and Characteristics of UK Heat Networks – 2015
3 Danish Energy Agency – www.ens.dk/en
Local Government Association (March 2011)
Local Government Association Quick Guide to Local Government –
http://www.local.gov.uk/c/document_library/get_file?uuid=a5b2c920-8f40-4ea-ea9852-8b953724f5bc&groupId=10180
The value of decentralised energy

What is decentralised energy?
As the technology improves and its price decreases, the scale of decentralised energy projects is often only limited by the ambition of the developer, so ‘decentralised energy’ is now a broad term. It could refer to: a relatively simple, small-scale natural gas-powered generator; a slightly more complex, natural gas-powered combined heat and power system that provides heat to a nearby office as well as some electricity; or to a integrated system that involves energy from waste plants combined with other renewable electricity generation technologies linked to a district heating network.

Decentralised energy is an evolving term, which needs to develop alongside new technologies and innovations in commercial structures.

We build upon the World Alliance for Decentralised Energy definition as we see decentralised energy as also encompassing:

- Balancing risk and reward
- The benefits of decentralised energy range from public policy interest and environmental policy concerns, through to realising additional revenue streams and better serving local communities. Together these drivers are tipping the balance in favour of investing in decentralised energy schemes.

“To this end, we define decentralised energy as:
‘Energy generated nearby the end-user and/or sold by small-scale local suppliers.’

Balancing risk and reward

The benefits of decentralised energy range from public policy interest and environmental policy concerns, through to realising additional revenue streams and better serving local communities. Together these drivers are tipping the balance in favour of investing in decentralised energy schemes.
Drivers for change

Whether the entity promoting a decentralised energy project is a local authority or developer, a range of drivers will come into play.

A well-designed and managed decentralised energy scheme will be able to supply energy at a competitive price for customers, while also potentially delivering financial returns for the investor. It comes in two principal forms:

- The sale of electricity or heat – this might be through power or energy purchase agreements, through an established energy supplier aggregator or in some cases direct
- By offering services to the National Grid to assist with system balancing

In order to contribute towards Government and international targets to combat climate change, local authorities, businesses and consumers are seeking ways to reduce their impact upon the environment. Even energy generation from fossil fuels produces less greenhouse gasses when part of a decentralised energy system than individual gas boilers. When utilising CHP and other renewable technology, decentralised energy schemes can have a lower carbon footprint than their grid average equivalent.

Decentralised energy schemes can have lower overall operating costs than individual schemes due to their scale.

Central government encourages local authorities to contribute to decentralised energy production and supply. This is to tackle climate change and develop an additional source of revenue generation, but also because increasing the amount of energy generation and supply close to where people live helps to increase stability in the national grid system and provides system-balancing services. As an increasing amount of traditional centralised energy generation comes off-line, the importance of localised and decentralised energy grows.
CASE STUDY

Cheshire East Council and Fairerpower Revenue generation

As well as establishing an energy supply service, Cheshire East Council also has plans to develop an energy generation business to complement this initiative. Cheshire East decided to team up with energy provider OVO Energy to deliver a better deal to the people in the area and keep more money in the local economy.

Cheshire East Council established the brand Fairerpower and contracted much of the administration and risk out to OVO Energy on a five-year contract to supply energy to local residents who sign up. This has transferred the exposure and risks ordinarily incurred to meet energy supplier regulations, manage customer services, billing and bad debt away from the council. It has also enabled the council to transfer risk of fluctuations in the energy market to their delivery partner. The council however has tight key performance indicators (KPIs) in place to ensure consistent performance of its supplier, such as position in the market on prices, ensuring Fairerpower is always cheaper than the ‘Big 6’ and how long customers are kept on hold. The council’s ethos is to make a profit from Fairerpower, instead to pass the lowest possible costs onto their customers – a value it believes it shares with OVO Energy. The council invested its own funds into setting up the initiative. These were ‘paid back’ into the pockets of residents after the first 700 customers signed up to Fairerpower.

OVO Energy was established in 2009 as a company committed to delivering high quality customer service and low prices to consumers. It is a challenger to the Big 6 established energy supplier firms. Since entering the market, OVO Energy has sought to do things differently with a focus on ‘community energy’. Not dissimilar to farmers’ markets, OVO Energy has sought to provide greater information on where it sources its energy from – seeking to utilise suppliers close to users, especially where this is competitively priced low carbon energy. The OVO Energy community schemes are aimed at local authorities, housing associations and other community benefit societies, enabling them to become energy suppliers without the complication and risk of delivering this in-house.

Fairerpower launched in March 2015 and thanks to marketing from the council has already attracted 3,700 customers, much more than the original 500 which the council had expected to attract in the first year. Councillor Michael Jones, Leader of Cheshire East Council, said: ‘I want to eliminate fuel poverty … and Fairerpower will help us do this. That’s why we have become the first local authority to supply energy to the public since gas and electricity were nationalised in 1948.’ In less than a year the scheme has saved customers in the area almost £1 million with individual customers saving an average of £200 on annual energy bills. The council estimates that if everyone within the region switched from a Big 6 provider, there would be savings of around £25 million for residents. The council hopes the money saved will improve the lives of local residents and be reinvested back into the local economy.

Fairerpower was set up in under a year, such was the commitment by the council to do something for local residents. Initial proposals were drawn up in June 2014 with the decision to outsource the logistics to an existing energy supplier. The council undertook a procurement in September 2014, awarded the contract in December and Fairerpower began supplying electricity in March 2015. The council drew upon the advisory services of Amersesco (engineering consultants), Addleshore (legal advisers) and brought in an external project manager. The council owns the Fairerpower brand and is responsible for setting the tariff levels, the marketing and general ethos of the enterprise. Whilst Fairerpower believe it can make savings for most customers, its focus is on the sticky customers who have arguably been taken advantage of by not switching suppliers before. Fairerpower is committed to treating existing customers the same as new ones by offering them the best deals that it can find. There are no joining or leaving fees so customers are free to see if there are more competitive deals applicable to them at any point. The council meets with its energy contractor, OVO Energy every month to discuss tariff levels and overall contract performance.

Significant as this is, Cheshire East Council does not plan to stop here. Keeping to the ethos of newly founded Fairerpower and OVO Energy, Cheshire East is looking to develop energy generation in order to provide an even better deal to residents. Plans consist of energy from waste, geothermal and the establishment of a potential heating network.

Fairerpower launched in March 2015 and thanks to marketing from the council has already attracted 3,700 customers, much more than the original 500 which the council had expected to attract in the first year.
Peterborough City Council: Fairer Energy

Fairer energy prices for the city is at the heart of what Peterborough City Council is seeking to achieve for its residents. The council has brought a specific tariff reserved for the people in the city to benefit from. The hope is that it will tempt the so-called ‘sticky customers’ who have either never changed (or rarely change) their energy supplier to make the switch.

Partnered with OVO Energy, Peterborough takes on the role of the trusted energy partner. It has tight KPIs with OVO to ensure: prices are some of the lowest available; customer service is high; the power is environmentally responsible; and that marketing of the tariff is easily understandable. It falls to OVO to manage the customer relationships, billing and the actual purchase and sale of electricity and gas. Marketing savings are made as OVO has access to the council database.

With the exception of a bit of administration on the contract there are no costs to the council. The concept was launched quickly from initial ideas towards the end of 2014, to presenting it to the council’s cabinet in January 2015 and launch in April 2015. The council, which also runs its own collective switching programmes in which a number of individual customers are bound together and an auction takes place to find the cheapest energy supplier, is open that its Fairer Energy scheme may not be the lowest price for everybody all the time, but it should be one of the lowest.

From June to October 2015, the council had 850 people in the city signing up, saving an average of £237 each. The scheme is one of the latest in a series of initiatives the council has taken in the energy and waste space. The start of 2016 saw the completion of the energy-from-waste facility for the City: Cllr John Holdich, Leader of Peterborough City Council commented: “The energy-from-waste facility gives Peterborough a much needed alternative to landfill. Rather than sending waste to landfill it will be turned into electricity, saving the city £1 million every year for the next three decades.” The city council is selling the electricity generated into the UK electricity grid.

CASE STUDY

The value of decentralised energy

Your generation: making decentralised energy happen – Reviewing the decentralisation of energy in the UK
When a decision is made to explore the benefits of decentralised energy, consideration must then be given to how to make it happen.

There are many approaches and delivery models for decentralised energy, but in order to decide the most appropriate option, local authorities must consider:

- what is the objective; what do you want to achieve?
- what is the risk appetite and to what degree do you want control and ownership of revenue returns?
- what funding sources are available?

Once these three aspects have been considered, there are then varying delivery structures which could be adopted, depending on the level of local authority involvement.

The optimum delivery structure will be one which is financially efficient, draws upon private sector skills (where required), whilst retaining enough control over the delivery body to ensure promotion of the driving social, economic and environmental aspirations. The case studies throughout the guide illustrate different approaches a number of local authorities have taken.

The chart below provides a visual representation on the role local authorities can play in delivering a project, frequently set against the appetite for risk and desire to benefit from returns.

Example

Sheffield Energy Recovery Facility (ERF)

Under a 35 year contract with Sheffield City Council, Veolia operates an ERF which treats 28 tonnes of the city's residual waste per hour, or 225,000 tonnes per year. This waste generates up to 21MW of electricity for the grid each year, enough to power 25,000 homes and up to 45MW of heat is supplied to buildings connected to the city's HN.

Over 140 buildings are connected to the district heating network which includes homes, leisure centres, offices, theatres and university buildings.

“The Energy from Waste facility gives Peterborough a much needed alternative to landfill. Rather than sending waste to landfill it will be turned into electricity saving the city £1 million every year for the next three decades.”

Cllr John Holdich
Peterborough City Council

Commercial structure options for heat networks

<table>
<thead>
<tr>
<th>Public sector control</th>
<th>Private sector control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who has control</td>
<td>Who bears the risk</td>
</tr>
<tr>
<td>Public sector funded, operated and owned</td>
<td>Public sector carries risk</td>
</tr>
<tr>
<td>Public sector led use of private sector contractors</td>
<td>Private sector carries risk</td>
</tr>
<tr>
<td>Private sector invests in some elements of the network</td>
<td>Public private joint venture with differing levels of ownership</td>
</tr>
<tr>
<td>Public funding to incentivise private sector ownership</td>
<td>Private sector ownership with public sector customer</td>
</tr>
<tr>
<td>Private sector ownership with public sector customer</td>
<td>Private sector ownership with public sector facilitation</td>
</tr>
</tbody>
</table>

Source: Investing in the UK’s heat infrastructure: Heat Networks (DECC)
South East London Combined Heat and Power (SELCHP)

20 years after the Energy from Waste (EfW) facility was originally commissioned, 2013 saw the development of a district heating network to harness the heat from SELCHP. This heat element finally came to fruition through a Section 106 agreement under Southwark Council’s planning policies relating to Veolia’s Old Kent Road specified recovered fuel (SRF) facility.

Previously energy generation would have typically consisted of a single source. Today there are generation sources and systems that can flex to meet demand allowing local authorities to have a greater ability to react to local demand, providing efficiency, as well as welcome revenue returns through supply to the national grid.

At the top left of the spectrum, an entirely public sector led project, where the local authority is responsible for the design, financing, building, owning and operation of the project. This is likely to be desirable where the local authority wishes to retain control (ie asset ownership and governance) of the scheme and has funding available.

At the bottom right of the spectrum, is an entirely private sector funded project. This is likely to be the case where the local authority is not providing funding and wishes to contract out the service, potentially only interacting with the project as a customer, or consumer.

There is of course a sliding scale where the risks and returns are shared between the public and private sector, which might be in the form of a joint venture, including the set up of a special purpose vehicle (SPV). Other entities may be involved (or sole delivering) such as a community company.

As we have seen for offshore wind (and now for onshore wind), we may see an ‘unbundling’ of the generation, distribution and supply elements of the service due to the differing asset lifetime and risks associated with each element – each will require its own delivery structure.

The role of local authorities

Local authorities have a unique position to effect change in the decentralisation of energy as they have access and certain control over the policy environment (eg planning), significant infrastructure and services with predictable energy loads, goodwill and resources to set precedents with real impact on energy use. Local authorities also make investment decisions, which are not purely financially-driven, but take into account wider social and environmental factors. They can therefore deliver value in more areas than the private sector.

Local authorities’ ability to understand the requirements and needs of their local residents better than a commercial developer should not be undervalued. Local authorities frequently have close links with the more vulnerable and an appreciation of their challenges. They will also have an understanding of housing needs and population densities and in some cases may also have undertaken heat mapping exercises, such as the extensive heat map of London. This wealth of knowledge means local authorities can drive forward decentralised energy projects which are designed around the consumer.

“**We have decided to take the bold step of setting up Robin Hood Energy so that energy can be provided to customers across Nottingham and beyond at the lowest possible price, run not for profit, but for people. Whatever money is saved should go back into the local economy.**”

Cllr Alan Clark

Nottingham City Council
CASE STUDY

London Borough of Southwark: South East London Combined Heat and Power (SELCHP)

Southwark Council teamed up with Veolia to deliver a district heating network, using heat from the incineration of rubbish. SELCHP delivers heat and hot water through a 5km network to 2,800 council homes in Southwark. The scheme is set to save 7,700 tonnes of CO2 per year as well as make savings on gas.

Originally commissioned in 1993 at a cost of £95 million, SELCHP, a special purpose vehicle, was funded largely by the private sector, reflected in the ownership structure where today Veolia hold 49.4%, CNIM hold 48.7%, EDF 1.6%, with Ener-G, John Laing, Greenwich and Lewisham Boroughs each holding 0.07%. Southwark did not directly invest, but contracted with the facility for waste services. SELCHP was one of the first of its kind to turn waste into energy, heat and electricity, meeting tough environmental standards, and has formed a model for subsequent plants in the UK.

Twenty years after the facility was originally commissioned, a district heating network was developed, completing the original vision for the project. Grant Thornton was the financial adviser up to the financial close of the district heating scheme. This saw Southwark Council enter into an additional contract for services to its original 25-year waste public finance initiative (PFI) contract signed with Veolia in 2008. Under the contract the council would buy heat from Veolia at a cost below that required to generate the same amount of heat using gas. The original PFI, together with the additional contract for services, meant that the council did not have to spend any of its reserves on either the original incinerator facility or the heat network. Instead Veolia and SELCHP together made the additional £7 million investment to deliver and maintain the district heating network.

The project works by Veolia collecting all of the waste from Southwark, as well as neighbouring districts. Following the extraction of the recyclable elements, the waste is then turned into specified recovered fuel (SRF) at the Old Kent Road facility. This is then taken to SELCHP where it combusts the waste resulting in the generation of electricity and heat. Once generated, the electricity is sold to the grid and the heat is sold to Veola, which then sells the heat to Southwark to heat council homes.

The waste PFI expires in 2033, at which point the council has the option to take ownership of the heat network. The energy from waste plant will remain in the ownership of SELCHP. All parties expect the assets to have a lifetime which will extend well beyond this period.

The council has ensured the up-front capital cost, maintenance costs and operational risks rest with the contractor, while also ensuring that the heat purchased is linked to current day gas prices. As such it has ensured that residents and itself benefit from the recent fall in gas prices. This means neither the council or residents are worse off than if they had continued to use their previous supplier. When SELCHP is not operational, due to planned maintenance, any heat requirements are provided by Veolia through conventional gas boilers. The council has also negotiated a profit share, should SELCHP extend the heat network and sell heat to new developments.

Risks exist within any scheme, with the main ones identified here being if one or more of the commercial contractors went into administration, pressure on the contractors if the price of gas were to continue to fall or if there wasn’t enough waste to fuel the facility. Should any of these risks materialise, in the worst scenario Southwark would revert back to the conventional boiler heating system. But so far the council reports that all parties are benefiting, with Southwark progressing its policy objectives of reducing carbon emissions as set out in their 2003 Waste Strategy, a reduction in heating costs to the council as well as residents and the contractors making an acceptable margin. There is even scope to increase the heat network in future years as SELCHP has the capacity to provide heat to a further adjacent 1,200 council properties and 900 other private residencies.
Nottingham City Council: Robin Hood Energy Limited

Concerned by the prices and poor service from the large energy companies, Nottingham City Council took the decision to set up its own electricity and gas supply company, with the aim of supplying energy direct to homes and businesses across the UK. Robin Hood Energy Limited was launched and started trading in September 2015.

Unlike some other local authority schemes, this is markedly different on two counts. First, they are offering services to the whole of the UK. Second, it is the council that fully owns and runs Robin Hood Energy. As such the council has needed to become a fully licenced energy supply company with the regulator, incurring all the costs and demands which that brings. In 2011, the council was already operating collective switching schemes and providing other advice and support on how customers could reduce bills, but the members wanted more. Business cases and plans were produced justifying an investment by the council to allocate £2 million of set-up costs in 2014. This enabled them to purchase customer relationship management (CRM) systems, billing software, payment systems, metering services, as well as a ‘licence in a box’ (through the purchase of a pre-existing energy trading company).

Nottingham City Council has set the company up as a not-for-profit entity, where the directors do not receive remuneration or the staff bonuses. By keeping the overheads of the company low, the council believes that it can deliver energy at some of the lowest prices on the market. Robin Hood purchases its electricity and gas from the wholesale market. It has adopted a low-risk strategy and employs an energy trader that typically purchases energy three to six months ahead. This is then sold direct to customers. The hope is that in future it will be able to make better use of the energy that it generates locally by entering into power purchase agreements with small energy generators. The council believes that it can offer better prices through being more responsive to fluctuations in the wholesale energy market and by keeping overheads low. Robin Hood also does not pay energy switching sites to do the switch, instead referring customers to Robin Hood Energy direct. Councillor Alan Clark, who holds the energy and sustainability brief at Nottingham City Council, said: “We have decided to take the bold step of setting up Robin Hood Energy so that energy can be provided to customers across Nottingham and beyond at the lowest possible price: run not for profit, but for people. Whatever money is saved should go back into the local economy.”

Only trading since September 2015, the business currently saves customers over £200 on average and energy analysts believe they are one of the more competitive in the market. Robin Hood Energy sets itself a target of achieving 50,000 customers in its first year and currently professes to be well on track to meet this. The council considers it is already having an impact in the market, not only to those who have signed up, but also for wider energy customers in the region through ‘disrupting’ the market. According to national rankings the East Midlands has gone from 7 out of 14 before the launch of Robin Hood Energy to second after only three months of Robin Hood trading. This benefits all customers in the area who search for energy deals, not just those who switch to Robin Hood. The council particularly wants to target the traditional sticky or pre-payment customers in the area who have the potential to save the most as they have not switched before.

The district heating scheme cost around £5 million overall and funds were provided by a variety of sources, but largely the Homes and Communities Agency. The scheme saves an annual 27,000 tonnes of CO2. As Robin Hood Energy becomes established, the hope is that greater synergies can be realised from the generation arm of the council and the supply arm for the benefit of customers in Nottingham and beyond.

Nottingham City Council’s approach of launching and supporting its own energy retail company is a first for local authorities. Its extensive experience in the energy business has provided it with the in-house skills and experience to go it alone. This example shows the success that a local authority can have unlocking its own internal capabilities and drawing upon specialist advisory services only where necessary. As more local authorities enter the energy market and gain first-hand experience and evidence of how it works, shortcomings in the supply side become exposed, which the council will use to challenge the market and promote change.
Due to the complexity and coordination required to deliver decentralised energy schemes, some level of local authority may be required. A strong project promoter is often a success factor in making a decentralised energy scheme successful, and this is a role which can be effectively undertaken by the local authority.

Where decentralised energy schemes include the supply of heat (currently unregulated) it is important that these schemes are constructed and operated efficiently to ensure that consumers are economically better off compared to the cost of the alternative (eg gas boilers). Local authorities are uniquely positioned to monitor, advise and administer heat networks to ensure these targets are being met.

Local authority considerations when entering the decentralised energy market

<table>
<thead>
<tr>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Often have access to/control over significant estate, services, goodwill and resources</td>
<td>• May not always have the capacity or in-house capability required to implement such projects</td>
</tr>
<tr>
<td>• Have the ability to make investment decisions which are not purely financially driven (ie with social and environmental objectives in mind)</td>
<td>• Public spending cuts reduce available resources and further cuts are on the horizon</td>
</tr>
<tr>
<td>• Have valuable insight of community needs, landscapes and energy use.</td>
<td>•</td>
</tr>
<tr>
<td>• Can take the long-term view</td>
<td></td>
</tr>
<tr>
<td>• Understand their local residents’ and businesses needs</td>
<td></td>
</tr>
<tr>
<td>• Own or have the ability to otherwise connect to anchor heat loads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Local planning departments can contribute to steering energy-conscious development</td>
<td>• Operating in the complex energy market is something even large corporates have struggled to make a success of</td>
</tr>
<tr>
<td>• Direct hierarchy to central government provides a key route to impacting national policy</td>
<td>• High costs of connection to the grid, as well as meeting the exacting licensing requirements of electricity retail, can be encumbering</td>
</tr>
<tr>
<td>• Have access to central government funding as well as low-cost borrowing. (The Summer Budget 2015 suggests a government which will “prioritise investment in infrastructure”)</td>
<td>•</td>
</tr>
<tr>
<td>• Often have the freehold of domestic housing and business premises</td>
<td></td>
</tr>
<tr>
<td>• Potential revenue earner</td>
<td></td>
</tr>
<tr>
<td>• Lower energy bills for local domestic and business residents</td>
<td></td>
</tr>
<tr>
<td>• Can link with other local authority operations such as solutions to waste, or tap into other independent local authority projects, eg solar, wind etc</td>
<td></td>
</tr>
</tbody>
</table>
Funding and returns

Financing any large infrastructure project requires specialist knowledge and experience, together with a robust business plan and proposal. Data from DECC suggests that projects involving heat networks currently being developed in which they have involvement or knowledge of are showing pre-tax internal rates of return between 5-9% over 25 to 40-year periods. This is a modest return for commercial investors over a long period. However, with the right structuring and risk and reward allocation, funding can be accessed. The lower the risk profile the lower the price should be for either debt or equity, which is important for the overall efficiency of the scheme.

Local authorities are often able to raise funding at lower rates than the private sector, either through internal resources, Prudential Borrowing or grants. This means that schemes can repay their capital costs faster and deliver higher returns for the local authority and bigger benefits to consumers. In some cases, upfront seed funding from the public sector could be key to getting a project over the construction hurdle (which is commonly understood to be the highest risk phase of the project).

Operational assets could then be refinanced in a developing secondary market, releasing public sector funds to be invested elsewhere, or even recycled back into expansion of or new decentralised energy projects.

Careful structuring of decentralised energy projects is required to ensure that they meet the requirements of all of the key stakeholders, which may be conflicting. For example, ensuring that the end customer receives a saving on the current heat price, as well as ensuring that investors receive their required rate of return. Complex interfaces between the different parties must be appropriately reflected in the contractual structure.

Bunhill Heat Network

Bunhill Heat and Power is a ground-breaking scheme retrofitting district heating to existing buildings in an inner-city environment. Completed in 2012, the first phase of the network serves over 850 homes, two leisure centres and a new housing development. It provides cheaper, greener heat to residents, helping to provide a buffer for residents against rising fuel prices and delivers CO2 savings of around 60% for the existing buildings compared to their previous heating systems. Islington Council is looking to expand the network in 2017 to connect additional homes and capture low carbon and renewable heat from local sources such as the London Underground network.

A 115m³ thermal store allows the CHP to efficiently operate during periods of high electrical demand (securing better prices) by storing the heat generated. Expansion to this is anticipated in the form of a further 70m³ store which will be charged via low carbon sources (such as a heat pump) during periods of low electricity prices.

EXAMPLE

University of Liverpool

The university has interest-free funding from Salix Finance to install two new 2MW CHP engines in their old boiler house. The total project cost was £7.3 million, with £6.1 million of funding coming from Salix and £1.2 million from other funding sources. The university is saving £1.5 million and 5,730 tonnes of carbon each year. The payback period of the loan is 4.1 years.
Potential funding sources for scheme development

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Energy and Climate Change (DECC) Heat Networks Delivery Unit (HNDU)</td>
<td>Provides grant funding for project development and, as of 2016, there will be £320m of capital support from the Government for the delivery of heat networks available. Administered by DECC the fund is expected to supplement and build on the work of the HNDU. Guidance for the development of business cases compliant with Treasury procedures to maximise the chance of success will be provided.</td>
</tr>
<tr>
<td>Green Investment Bank (GIB)</td>
<td>As an example, in 2016 GIB supported the acquisition and expansion of the Wick renewable energy plant and district heating network. GIB is flexible in its lending which could be to a local authority or a special purpose vehicle (SPV). As there is not a specific decentralised energy product concepts should be discussed directly with the bank.</td>
</tr>
<tr>
<td>European Investment Bank</td>
<td>Funding could be available to local authorities and SPVs. Further information is at: www.eib.org/projects/sectors/energy/index.htm</td>
</tr>
<tr>
<td>Salix Interest Free Loan</td>
<td>These are available to local authorities and are designed to support energy efficiency improvements and carbon emission reductions. Both gas and biomass forms of CHP are eligible including developing or connecting to an existing heat network. Project loan sums however average only around £300,000, but each project should discuss their requirements direct. Further information is at: http://salixfinance.co.uk/</td>
</tr>
<tr>
<td>Raise a Green Bond</td>
<td>Effectively the same as raising any bond, likely to be carried out through an investment bank. Bond sizes vary, but they need to be of a sufficient size to be of merit, normally £150 million plus. These are available to public and private organisations and individual projects. However, a credit rating is likely to be required especially in the case of a private or project-linked bond and this could have an implication on the price of the bond. Further information is at: www.iisd.org/sites/default/files/publications/green-bonds-public-private-partnerships.pdf</td>
</tr>
<tr>
<td>Public Works Loan Board (PWLB)</td>
<td>Available to local authorities, this provides non-project-specific loans. Interest rates are low, but will count towards the local authority’s borrowing limits.</td>
</tr>
<tr>
<td>Lease and asset finance</td>
<td>This is available to the public and private sector from a variety of specialist lenders. These schemes can have a degree of complication and are linked to rental payments over the life span of an asset. Further information is at: www.gov.uk/business-finance-explained/leasing-and-asset-finance</td>
</tr>
<tr>
<td>Pension funds</td>
<td>These require very low risk long-term investments and as such are receptive to investing at lower rates of return, providing the risk balance is right. This can make them an ideal source for decentralised energy. The Government has developed a Pension Infrastructure Platform to facilitate long-term investment into UK infrastructure by pension funds. Further information is at: www.ppfunds.co.uk</td>
</tr>
</tbody>
</table>

Project development support

As a means to addressing climate change, reducing fuel poverty and delivering security of supply, the UK Government has policies in place to promote decentralised energy, as well as some financial incentives. Much of the government support available concentrates on decentralised energy schemes that include heat networks. This is not surprising given that heat is one of the biggest contributors of our greenhouse gas emissions and yet to date has been one of the areas where only limited progress has been made in the UK.

As many projects move stage from feasibility study to business case there is an increasing amount of guidance around the process of developing and implementing successful heat network systems. (Notable documents include the CIBSE ‘Heat networks: Code of Practice for the UK’).

Support comes in a number of forms, with arguably the most critical being financial. While financial support is paramount to aid the realisation of most decentralised energy projects, other forms of support should not be underestimated in order to ensure the most effective and efficient scheme is delivered.

Clear approach to financing

There is a broad range of financing options available to decentralised energy schemes. The approach needs to reflect the risk appetite of the local authority and the commercial characteristics of the scheme. Detailed consideration is needed as to how these sources are fed into the financial model.

A successful scheme will be underpinned by a sound business case with detailed thought given to what success will look like, how that can best be delivered and what the most suitable financial options to achieve what is really wanted. Where the initial money comes from is only part of the picture; Success requires a more holistic approach and ensuring the scheme is properly designed to meet the vision so that its capital cost and, more importantly, on-going operation is as efficient as possible is key.
Potential funding sources for scheme development

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax Increment Financing (TIF)</td>
<td>Available to local authorities who can borrow money for infrastructure against the anticipated increase in business rates income expected as a result of those projects – creating funding for local public projects that may otherwise be unaffordable. Further information is at: www.lgiu.org.uk/wp-content/uploads/2013/04/LGIU-Guide-to-the-Local-Government-Finance-Act-2012.pdf</td>
</tr>
<tr>
<td>Regional Funds</td>
<td>There are separate funding options available in some areas of the UK, for example in London, Scotland and potentially under some new City Deals and devolved schemes. If in doubt it is worth checking with DECC or an advisory firm.</td>
</tr>
<tr>
<td>European Structural and Investment Funds</td>
<td>Designed to help support local areas grow. There are three main types of funds: the European Social Fund, the European Development Fund and the European Agricultural Fund for Rural Development. Available to the public or private sector with compatible projects. Further information is at: https://www.gov.uk/european-structural-investment-funds</td>
</tr>
<tr>
<td>European Local Energy Assistance (ELENA)</td>
<td>Available to local authorities. An example of this in practice are the cities of Rotterdam and Leiden in the Netherlands which received €1.9 million in 2015 towards the costs of preparatory activities for a waste heat district heating project. Further information is at: www.eib.org/products/advising/lena/index.htm</td>
</tr>
</tbody>
</table>

Planning conditions

<table>
<thead>
<tr>
<th>Planning Condition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Infrastructure Levy</td>
<td>Available to local authorities in England and Wales to help deliver infrastructure to support the development of their area. Most new developments that create a net additional floor space of 100 square metres or more, or create a new dwelling, is potentially liable for the levy. The local planning authority will need to decide if it is going to charge a levy.</td>
</tr>
<tr>
<td>Town and Country Planning Act 1990 (Section 106)</td>
<td>Available to local authorities. Planning obligations under Section 106 of the Town and Country Planning Act 1990 (as amended), commonly known as s106 agreements, are a mechanism that makes a development proposal acceptable in planning terms, that would not otherwise be acceptable. They are focused on site-specific mitigation of the impact of development. An example of making a development acceptable might be the inclusion of a decentralised energy scheme.</td>
</tr>
</tbody>
</table>

Advice and advisory support

<table>
<thead>
<tr>
<th>Source</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECC HNDU</td>
<td>Provides advice to local authorities on the delivery of heat networks.</td>
</tr>
<tr>
<td>Local Government Association</td>
<td>Provides a considerable amount of online material and a discussion with them would be valuable prior to and during the establishment of a decentralised energy scheme. The LGA might be able to suggest which local authorities best match your own aspirations and approach.</td>
</tr>
<tr>
<td>Association for Decentralised Energy</td>
<td>Have a host of material available on their website and can provide further support and advice.</td>
</tr>
<tr>
<td>UK District Energy Association</td>
<td>Promoting district energy as a means to deliver significant carbon savings and to establish a direct link between the Government and the industry's market base.</td>
</tr>
<tr>
<td>Grant Thornton and other advisory firms</td>
<td>Have considerable experience from a range of similar and diverse projects. They can provide tailored individual advice to see a scheme efficiently and effectively delivered for local authorities, customers and any other investors.</td>
</tr>
<tr>
<td>Mentoring support</td>
<td>Many local authorities are happy to share their experiences and indeed offer a degree of mentoring support. The skill is to identify which schemes are most closely aligned to your proposed approach.</td>
</tr>
</tbody>
</table>

Your generation: making decentralised energy happen – Reviewing the decentralisation of energy in the UK
Delivering decentralised energy

Heat Networks Delivery Unit (HNDU)

Since 2013, DECC’s HNDU has provided grant funding of around £10 million to 118 local authority projects supporting feasibility studies. A significant barrier that it identified in the course of this work was the raising of capital funds to deliver projects. As such the HNDU is in the process of developing an investment fund for a proportion of the capital aspects of heat networks.

Local authorities that are awarded funding are allocated a project lead from the HNDU team to act as a critical friend. In order for a project to be awarded funding the HNDU panel look for evidence of the following:
- Good quality work undertaken prior to the stage for which the application is made
- Political and senior management support within the local authority to overcome challenges
- The local authority has, or knows how it will acquire, the right project management capacity to run a project
- Wider benefits, such as carbon reduction and reduced costs to consumers, are being considered

DECC has produced the following diagram which sets out the support it can offer to heat network projects being developed.

Collaboration

Close collaboration with the community and/or customers, understanding their energy needs and usage is key in delivering a successful scheme. Through the feasibility stage a thorough knowledge of the energy requirement should be developed to ensure the right scheme is designed to meet the local need and allow some surplus energy to be exported into the wider distribution system in return for revenue.

Participating in the energy market still has its complications, but has become significantly easier in recent years. Some local authorities build up full capability in-house and deliver energy at some scale. Others form a close collaboration not only with the local community, but also with licenced energy providers or generators that can take on the administration of supplying energy into the wider grid. Effective collaboration delivers affordable energy to the local community as well as wider revenue returns without the administrative challenge of managing network connections.
London Borough of Camden: Gospel Oak District Heating

A&E is where Camden Council turned to when its aging heating systems needed a revamp. The timing was perfect. The Royal Free Hampstead NHS Trust hospital had brought MITIE in to solve its growing heating and energy requirements, while reducing costs and carbon. Adjacent to the hospital Camden Council had a number of housing blocks constructed in the 1960s whose heating systems were in urgent need of an overhaul.

The council knew it had to replace the existing heating system, but also faced the need to make savings across the council. It considered numerous options, from a straightforward replacement of the boilers, through to a complete district heating system and construction of a combined heat and power plant (CHP). Then a further option was explored. MITIE had already installed a CHP system for the hospital and it was suggested that this could be developed to also provide an energy solution to the adjacent council blocks.

As MITIE operated the hospital’s CHP, Camden appointed them (through an EU direct award of tender) to supply heat and operate the district heat network for a 14-year period until 2026. The system works by capturing the heat from the exhaust gas flume through a heat exchanger which heats water which is then pumped to six housing blocks (1,449 homes) at circa 90 centigrade through the district heating network of just under 1.5km. In each block the heat network connects into the block’s heat and hot water distribution system. The heat received can be boosted by new efficient gas boilers in each block during periods of high demand, to ensure that there is always heat and hot water available. The base heat is provided by the CHP plant, representing about 51% on average of the total annual heat use.

With financial support from the London Mayor’s Targeted Funding Stream (MTFS) and the Department of Energy and Climate Change’s Community Energy Saving Programme (CESP), the scheme was completed in less than six months (due to CESP funding deadlines) at a cost of about £6 million and began operation in 2013. It is anticipated that the scheme will save in excess of £1m on fuel costs by 2026. The CHP plant has saved the hospital around £530,000 a year compared to its original spend on heating and lighting. On top of these monetary savings, the CHP unit is reducing carbon emissions by around 2,500 tonnes each year.

The council accesses the heat from the hospital CHP unit in exchange for an annual fee, regardless of the amount of heat consumed. The heat is then shared by the six housing blocks. The scheme is helping the council to reduce fuel poverty and to meet its target of a 40% carbon reduction by 2020. Whilst a success and delivered quickly from the point of decision, it has not been easy, especially with the CESP funding deadlines to meet. Original plans to deliver a heat distribution network and CHP plant date back 20 years, but the business case could not be made. The issue became more urgent in 2008 when it was clear the existing heating systems needed to be replaced, however it was still challenging to justify a scheme. It was only in 2011 with the suggestion of working in partnership with the hospital, and with grant funding from MTFS and CESP, that the business case stacked up. Even then, the contract negotiations, direct award of tender (occasioning the publication of the first ever VEAT notice in the Official Journal of the European Union) and performance management all provided challenging hurdles.

Camden Council provides a good example of where it made environmental and financial sense to enter into a partnership arrangement with the local NHS trust for mutual benefit. An additional advantage has been the reduction in carbon emissions which is significantly helping the local authority meet its targets. The case study also shows the type of innovation and benefit that can be achieved when looking creatively at a problem and getting diverse stakeholders working together to one shared goal.
Decentralised energy schemes come about for a number of reasons, but there are some common influencing factors which mean that some locations are more conducive to decentralised energy than others. Efficiencies can be driven through energy being generated in an area close to where it is consumed. The concept of meeting local demand drives the type and size of the scheme. Energy deficits can be served by drawing down from the national network, and some schemes may have the capacity to export surplus energy. Exporting energy, in particular at peak demand periods within the national network, can bring in additional revenues to the schemes.

We have identified certain indicators which are likely to have an impact on the emergence of decentralised energy schemes involving heat networks. These are population density, manufacturing density and industrial emissions density. Of course there are a number of other factors that will determine the location and size of decentralised energy schemes, such as the level of commitment and available resources of the local authority and its partners, political and social objectives, as well as physical barriers or opportunities. With these more subjective factors placed to one side, the maps below show three indicators that could drive the development of decentralised energy schemes with heat networks. We have also worked with our Place Analytics team to produce a combined 'Heat Network Score' which assigns a number to each of the 324 English local authorities based upon how prevalent each of the indicators are in that area.

Place Analytics – Where should it happen?

The more dense the demand for heat, the more efficient a heat network can be. Working to total number of people residing per hectare, there are certain locations more densely populated and able to support economically viable heat networks. There are obvious clusters of high population density, with the majority of London, Birmingham and its surroundings, and other major urban areas such as Liverpool and Manchester, particularly dense. Conversely, the majority of the larger more rural areas, particularly in the south west, north and Wales exhibit much lower population density levels. In this map we have given population density a double weighting, to signify its potential added importance as a factor. As population density is upweighted, more London boroughs enter the top 20 areas in need of a heat network.
Locations with a greater density of business in manufacturing and related industrial sectors are more viable to support heat networks, as these businesses are likely to produce surplus heat that can be harnessed. The map highlights the total number of people employed in manufacturing businesses, across all local authorities in England. Again, there are clusters of high employment density around much of London and other major urban areas. Cities in the Midlands have a particularly strong manufacturing presence, with Derby, Leicester, Wolverhampton and Coventry all ranking in the top 20 areas nationally. Once weighted, with large manufacturing bases such as Leicester and Derby become more prominent and move up the rankings for areas conducive to heat networks.

Locations with a higher density of industrial CO2 emissions again indicate a greater abundance of potential surplus energy. The emissions density is also indicative of an opportunity to reduce emissions through lower carbon energy sources. The map highlights total industrial kilo-tonne CO2 emissions, across all local authorities in England. Along with the aforementioned urban locations, areas such as Redcar & Cleveland, North Lincolnshire and parts of south Wales also exhibit a large prevalence of industrial waste emissions. Interestingly, the City of London experiences by far the greatest emissions density, given its large business base and diminutive geographic area.
By combining the various data groups outlined above, a Heat Network Score can be derived. This un-weighted composite index provides an indication of potential areas particularly suited to supporting economically viable heat networks. As noted above, there are other, less measurable factors, which mean a heat network may be the optimal solution and so the score is not intended to suggest areas not highlighted should not have heat networks, or that heat networks should exist in all highlighted areas. Unsurprisingly, London performs very strongly, with its boroughs making up the top 14 ranked areas within the top 20 list. Other large urban areas such as Leicester, Hull, Portsmouth and Derby also make the list.

A common driver for decentralised energy schemes, in particular heat networks, is the alleviation of fuel poverty. Further analysis has been conducted to compare the heat network score against the number of fuel-poor households within an area allowing for the segmentation of the areas based on both the viability of a heat network and the needs of the local population. Those areas that have high levels of fuel poverty and a strong Heat Network Score are of particular interest for further exploration. Some examples of these are Hull, Wolverhampton, Plymouth and a number of London Boroughs.
Dynamic organisations know they need to apply both reason and instinct to decision making. At Grant Thornton, this is how we advise our clients every day. We combine award-winning technical expertise with the intuition, insight and confidence gained from our extensive sector experience and a deep understanding of our clients.

Grant Thornton UK LLP is a leading business and financial adviser with client-facing offices in 24 locations nationwide. We understand regional differences and can respond to needs of local authorities. But our clients can also have confidence that our team of local government specialists is part of a firm led by more than 185 partners and employing over 4,500 professionals, providing personalised audit, tax and specialist advisory services to over 40,000 clients.

Grant Thornton has a well-established market in the public sector and has been working with local authorities for over 30 years. Our national team of experienced local government specialists provide the growing range of assurance, tax and advisory services that our clients require.

We are the leading firm in the local government audit market. We have over 180 local government and related body audit clients in the UK and over 75 local authority advisory clients.

This depth of experience ensures that our solutions are grounded in reality and draw on best practice. Through proactive, client-focused relationships, our teams deliver solutions in a distinctive and personal way.

Grant Thornton’s Energy and Environment (E&E) team sits within our Government & Infrastructure Advisory (GIA) business unit. Our core sectors include decentralised energy and waste management, with a focus on the circular economy. We advise both the public and private sector, giving us a 360° perspective on project drivers, opportunities and risks.

Our services are deeply rooted in national policy, having undertaken the independent review of the roll out of Electricity Market Reform (EMR), DECC’s largest commission to date. We are currently working with DECC’s HNDU to produce guidance to local authorities on developing robust business cases for heat networks.

We take an ‘inception to implementation’ approach, which ensures we understand the lifecycle of a project right from strategy and business planning, funding and delivery, procurement and tendering through to contract award and management. The GIA group has advised on more than 600 projects with a combined capital value of nearly £50 billion. This enables us to bring experience and funders’ perspectives to project appraisal work, maximising leverage of private investment against public levels of commitment.

About us

About Place Analytics

Our Place Analytics team provides a market-leading analytical and advisory service to support location-based decisions and business planning. The team helps clients across the public and private sectors to understand better the places, economies and markets in which they operate and the people that they serve.

Through a combination of sophisticated business intelligence tools and over 4,000 data sets Place Analytics enables:

- comparison between different areas and places across a range of spatial scales
- data sets to be tracked over time and an assessment of the impact of policies
- the correlation of data to undertake multivariate analysis and unpack the drivers of particular patterns
- place optimisation through the identification of particular locations based on a range of criteria and analysis of people by where they live, to identify common characteristics and behaviours within areas.

To find out more about the potential for decentralised energy in your location, understand where your place ranks on our Heat Network Score, or to find out more about how Place Analytics can best support and add value to your organisation, please visit our website (gt-placeanalytics.com) or contact one of our team.
Contact us

Mike Read
Director
M +44 (0) 7971 409 287
E mike.read@uk.gt.com

Michael Berrington
Associate Director
T +44 (0) 20 7728 2760
E michael.c.berrington@uk.gt.com

Jennifer Gilbert
Manager
T +44 (0) 161 953 6420
E jennifer.gilbert@uk.gt.com